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Exact results of a generalized Wu model with two- and four-spin interactions
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The mixed spin-1/2 and spin-SB Ising model with two- and four-spin interactions on the honeycomb lattice
is studied by the use of a generalized star-triangle transformation. The exact results for the phase diagrams,
magnetization, correlation functions, internal energy, specific heat, and quadrupolar susceptibility are obtained
and discussed.
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I. INTRODUCTION

During the last two decades, there has been an increa
interest in studying Ising models with multispin interaction
The influence of multispin interactions on critical properti
of various models has been theoretically studied within d
ferent methods such as the exact calculations@1–4#, series
expansions@5,6#, renormalization-group techniques@7#, and
Monte Carlo simulations@8,9#. Except these accurate trea
ments, less sophisticated mean-field and effective-field m
ods have been also used to investigate the multispin eff
in these systems@10–12#. Although the approximate meth
ods usually provide rather good qualitative description of
systems with pair interactions, they can completely fail in
case of the systems with multispin interactions@13#. For this
reason, the exactly solvable systems play very important
in understanding of the multispin effects. From the expe
mental point of view, the models with multispin interactio
can be applied to various physical problems such as bin
alloys @8#, classical fluids@14#, solid 3He @15#, lipid bilayers
@16#, metamagnets@17#, and rare gases@18#. Another inter-
esting application of the model with four-spin interactio
represents the paper by Chunlei@19# in which the thermody-
namic properties of hydrogen bonded ferroelectrics PbHP4
and PbDPO4 have been studied. Moreover, the models w
four-spin interactions have been used to describe the fi
order phase transition in squaric acid crystal (H2C2O4)
@10,20#, as well as, in some copolymers@21#. One should
notice that the authors of these studies have obtained g
agreement of their theoretical predictions with the expe
ments. Except above-mentioned applications, we would
particularly to emphasize the recent experimental works
Köbler et al. @22# who have significantly contributed to ou
understanding of the higher-order interactions in magn
systems. In general, the models with multispin interactio
may exhibit physical peculiarities, for example, the nonu
versal critical behavior@2,3# or deviations from the Bloch’s
T3/2 law at low temperatures@22#.

Despite the fact that the models with higher-order int
actions are much more complicated then their counterp
with pair interactions, surprisingly some of these models
exactly solvable@1–4#. One of the simplest models of thi
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kind is a two-sublattice Ising model with pair and four-sp
interaction originally introduced by Wu@1#. In this work, we
will generalize this model including a crystal field and arb
trary spinsSB on one sublattice, while the spins on the se
ond one will be fixed (SA51/2).

The outline of the present paper is as follows. In Sec.
the relations for various physical quantities of the model w
two- and four-spin interactions are derived. The most int
esting numerical results are discussed in Sec. III. Finally,
main conclusions are summarized in Sec. IV.

II. FORMULATION

In this work, we will study a mixed spin-1/2 and spin-SB
Ising model on the honeycomb lattice consisting of two su
latticesA andB that are occupied by the atoms with the sp
SA51/2 andSB>1/2, respectively. In addition to the conven
tional two-spin nearest-neighbor interactions —JSk(mk1
1mk21mk3), we consider also four body interactions —
J4Skmk1mk2mk3 among any set of four spins within a un
cell of the dashed triangle as it is depicted in Fig. 1.

The Hamiltonian of the system can be written in the fo

FIG. 1. Part of the honeycomb lattice representing the gene
ized Wu model. Spins in the center of the dashed triangle inte
with their three neighbors with the pair interactionsJ and four-spin
interactionJ4 .
©2001 The American Physical Society26-1
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Hh5 (
kPB

Hk , ~1!

where the summation is over all sites of theB sublattice and
the site HamiltonianHk is given by

Hk52J~mk11mk21mk3!Sk2J4mk1mk2mk3Sk

2D~Sk!
2, J.0. ~2!

In Eq. ~2!, the first term describes the interactions betwe
pairs of nearest-neighbor spins, the second term repres
the four-spin interaction, and the last one describes the c
tal field effects onB atoms only. The spin variablesmka take,
on the sublatticeA, the values of61/2 andSk , on the sub-
latticeB, run over (2SB11) values allowed forB atoms with
the spinSB . It is easy to see that for the particular case
J450 our model reduces to the standard mixed-spin Is
model on the honeycomb lattice, which has been exa
solved by Goncalves@23#. On the other hand, for the case
SB51/2 andJ4Þ0 we obtain the model that has original
been introduced and discussed by Wu@1#. Owing to this
connection, the present model will be reffered to as the g
eralized Wu model.

The most important point of our calculations is the fo
lowing extended star-triangle~or Y2D) transformation~see
@24# and references therein!:

(
Sk52SB

SB

exp@bJ~mk11mk21mk3!Sk

1bJ4mk1mk2mk3Sk1bD~Sk!
2#

5A exp@bR~mk1mk21mk1mk31mk2mk3!#. ~3!

In this transformationA and R represent unknown param
eters of the relevant triangular lattice that can be expresse
the form @24#

A45V1V2
3 , bR5 ln

V1

V2
, ~4!

where we have defined the functionsV1 andV2,

V15 (
n52SB

SB

exp~bDn2!coshFnbJ

8
~121a!G ,

V25 (
n52SB

SB

exp~bDn2!coshFnbJ

8
~42a!G , a5J4 /J.

~5!

In this way, the generalized Wu model has been transform
into the exactly solvable spin-1/2 Ising model on the tria
gular lattice. One should notice that the transformation~4! is
rather general since it is valid for arbitrary spin valuesSB ,
however, it is limited topologically. After putting the critica
temperature of the spin-1/2 Ising model on the triangu
lattice (bcR5R/kBTc5 ln 3) into Eq. ~4!, we obtain the
phase boundaries of the generalized Wu model, which sa
the relation
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(
n52SB

SB

exp~bcDn2!H 3 coshFnbcJ

8
~42a!G

2coshFnbcJ

8
~121a!G J

50. ~6!

From this equation one can find the dependences of the c
cal temperature on the four-spin interaction and the cry
field parameter for arbitrary values of the spinSB . More-
over, the straightforward application of Eq.~3! relates the
partition function of the generalized Wu model (Zh) to the
partition function of the spin-1/2 Ising model on the triang
lar lattice (Zt) by

Zh~bJ,bJ4 ,bD !5AN/2Zt~bR!, ~7!

where the parametersA andR obviously satisfy Eq.~4! and
N denotes the total number of the spins on the honeyco
lattice.

In adition to the phase boundaries, we can also sim
calculate some interesting physical quantities. For exam
the magnetization and internal energy of the system can
directly expressed through the mean values of the spin v
ables~or correlation functions!. Namely,

Mh5
1

2
~mA1mB!,

mA[^mkl &h5
Tr mkl exp~2bHh!

Tr exp~2bHh!
,

mB[^Sk&h5
Tr Sk exp~2bHh!

Tr exp~2bHh!
, ~8!

and

Uh52
J

2
^Sk~mk11mk21mk3!&h2

J4

2
^Skmk1mk2mk3&h

2
D

2
^~Sk!

2&h , ~9!

whereMh andUh denote the magnetization and the intern
energy per one site of the generalized Wu model, resp
tively, and the symbol̂ •••&h means the standard ensemb
average for the system described by the Hamiltonian~1!. At
this stage, the main mathematical difficulty is to calculate
spin correlations included in Eqs.~8! and ~9!. Fortunately,
these correlations can be easily obtained from the follow
exact Callen-Suzuki-type identity@25#

^~Sk!
pf k&h5K f k

(
Sk52SB

SB

~Sk!
p exp~2bHk!

(
Sk52SB

SB

exp~2bHk!
L h, p51,2,

~10!

whereHk is given by Eq.~2! and f k represents a function o
arbitrary spin variables exceptSk . After applying one of the
6-2
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standard methods~for example, the differential operato
technique@26#! one gets the remaining quantities in Eqs.~8!
and ~9!

mB[^Sk&h56K1^mk1&h18K3^mk1mk2mk3&h

for p51, f k51, ~11!

q[^~Sk!
2&h5K0112K2^mk1mk2&h for p52, f k51,

~12!

rh[^Skmk1&h5
K1

2
1~4K112K3!^mk1mk2&h

for p51, f k5mk1 , ~13!

q4[^Skmk1mk2mk3&h5
3K1

2
^mk1mk2&h1

K3

8

for p51, f k5mk1mk2mk3 . ~14!

The coefficientsK02K3 depend on the exchange param
eters, the crystal field and the spin value, and they are g
by

K05
1

4
@GSB

~3J/21aJ/8!13GSB
~J/22aJ/8!#,

K15
1

4
@FSB

~3J/21aJ/8!1FSB
~J/22aJ/8!#,

K25
1

4
@GSB

~3J/21aJ/8!2GSB
~J/22aJ/8!#,

K35
1

4
@FSB

~3J/21aJ/8!23FSB
~J/22aJ/8!#, ~15!

where the functionsGSB
(x) andFSB

(x) have been defined a

GSB
~x!5

(
n52SB

SB

n2 exp~n2bD !cosh~bnx!

(
n52SB

SB

exp~n2bD !cosh~bnx!

~16!

and

FSB
~x!5

(
n52SB

SB

n exp~n2bD !sinh~bnx!

(
n52SB

SB

exp~n2bD !cosh~bnx!

. ~17!

To complete our calculations, we have to find out the s
correlations on the r.h.s of Eqs.~11!–~14!. Because all these
correlations include only the spins of the sublatticeA, we
03612
n

n

may determine them directly from the definition. In fac
using the transformation~3! one easily proves the equalit
@27#

^ f ~mki ,mk j , . . . , mkl !&h5^ f ~mki ,mk j , . . . , mkl !& t ,

~18!

wheref represents a function that depends only on the s
variablesmki of the sublatticeA. The subscriptsh andt mean
that the relevant averaging is related to the honeycomb
triangular lattice, respectively. Consequently, from Eq.~18!
one obtains relations

^mk1&h5^mk1& t , ^mk1mk2&h5^mk1mk2& t ,

^mk1mk2mk3&h5^mk1mk2mk3& t , ~19!

that complete our calculations, since the spin correlations
the triangular lattice are well known@27#. Apart from the
quantities discussed above, we are also able to get the
cific heat and the quadrupolar susceptibility of the syst
under investigation that are, respectively, defined as follo

Ch5S ]Uh

]T D , xT5S ]q

]D D
T

. ~20!

III. NUMERICAL RESULTS AND DISCUSSION

We start our discussion with the investigation of t
ground-state properties of the generalized Wu model. I
worth noticing that in addition to the ground-state ener
Uh , we will also analyze the exchange parameterR for T
→0 because the spin configurations on the sublatticeA and
consequently also the number of possible phases essen
depend on the sign ofR. At first, we summarize our findings
for integer values ofSB . In this case we have found that
D/J>21 then the exchange parameterR changes its sign as
follows:

R.0 for a.24,

R50 for a524,

R,0 for a,24. ~21!

On the other hand, forD/J,21 we have

R.0 for a.28D/J212,

R50 for 12D/J14<a<28D/J212,

R,0 for a,12D/J14. ~22!

Already at this stage it is clear that in the regions of posit
values ofR, the ground state of our system will be ordere
In the regions whereR50, we expect the appearance of th
paramagnetic phase (D1) and finally, forR,0 a more com-
plicated disordered phase (D2) can be observed since in th
case our model is transformed on the antiferromagnetic
angular lattice. A simple examination of the possible sp
configurations reveals the existence of 2SB ordered phases
6-3
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~to be denoted asO1 , O2, . . . , O2SB
). All these phases are

ferromagnetic ones withmA51/2 and different values ofmB
that depend on the crystal field and four-spin interactio
The regions of stability for the relevant ordered phases
be found in the usual way, i.e., by comparing their groun
state energies. In order to clarify the behavior of the grou
state phases, we will now analyze one representative
with SB.1. This choice is related to the fact that forSB
.1 more than three ordered phase appear in the system
allows one to make very general conclusions. For the sak
simplicity, we will investigate only the stability of three typ
cal ferromagnetic phasesO1 , O2, andO3 that are present in
any system withSB.1. According to our notation, the sub
lattice magnetizationmB of these phases is, respective
given by mB(O1)5SB , mB(O2)5SB21/2 and mB(O3)
5SB21. Similarly, the ground-state energies of these pha
are given by

Uh~O1!523JSB/42J4SB/162DSB
2/2,

Uh~O2!523J~2SB21!/82J4~2SB21!/32

2D~SB
22SB11/2!/2,

or

Uh~O3!523J~SB21!/42J4~SB21!/162D~SB21!2/2.

FIG. 2. Phase diagrams of the generalized Wu model with t
and four-spin interactions forSB51 and different values of the
crystal-field parameterD/J.

FIG. 3. Phase diagrams of the generalized Wu model with t
and four-spin interactions forSB53/2 and different values of the
crystal-field parameterD/J.
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By comparingUh(O1), Uh(O2), andUh(O3) one finds that
for a.21218(122SB)D/J is the stable phaseO1, for a
,21218(122SB)D/J is the stable phaseO3, and for a
521218(122SB)D/J all three phases coexist, thus a firs
order phase transition is possible. Of course, the similar
havior appears also at lower values ofa where other phase
(O4 , O5 , . . . ) become stable~or coexist!. It is also clear
that if we make the four-spin interaction weak enough a d
ordered phase will appear in the system. In fact, in agreem
with Eqs.~21! and~22! one finds in the relevant regions th
paramagnetic phaseD1 or another disordered phaseD2,
which is expected to manifest different physical properties
comparison with the standard paramagnet. Moreover,
can expect that the disordered phaseD2 can also exist at
finite temperatures. This implies the possibility of a pha
transition betweenD1 and D2. We believe that this conjec
ture can be verified by Monte Carlo simulations in the r
evant region.

To complete our considerations, we would like to emph
size that the foregoing discussion is fully applicable also
the generalized Wu model with arbitrary half-integer valu
of SB taking into account a small modification. Namely, w
have to account for the fact that in the case of half-inte
values ofSB the sign of the parameterR is given by Eq.~21!,
regardless of the value ofD.

Now, we will proceed further with the investigation of th
finite-temperature phase diagrams of generalized Wu mo

-

-

FIG. 4. Temperature dependences of the total magnetizationMh

~full lines!, sublattice magnetizationmA ~dashed lines!, and mB

~dotted lines! for the generalized Wu model withD/J520.5 and
different values of the four-spin interaction.

FIG. 5. Temperature variations of the two-spin correlation fun
tion rh for the same parameters as in Fig. 4.
6-4
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In order to illustrate typical phase boundaries, we have
picted in Figs. 2 and 3 the dependences of the critical te
peraturekBTc /J versusa for selected values ofD/J. Since
the phase diagrams depend also on the spinSB , we have
analyzed two representative systems, namely,SB51 and
SB53/2. As we can see, the critical temperature in both ca
decreases monotonically from its maximum value~at a
→`) and vanishes at a certain characteristic value of
parametera ~to be denoted asa0). We have found that in the
case ofSB51 the parametera0 is given by

a05H 24 for D/J>21

28D/J212 for D/J,21 ,
~23!

and in the case of half-integer values ofSB53/2 we have
obtaineda0524 for arbitrary values of the crystal-field pa
rameter. Here one should notice that the values ofa0 for
SB51 andSB53/2 are, respectively, valid for arbitrary inte
ger and half-integer values ofSB and they are in agreemen
with the ground-state analysis. We have also observed
further increase ofSB does not bring any qualitative resul
for the system. In fact, it is easy to verify that the syste
with integer values ofSB (SB>2) exhibit qualitatively the
same behavior as the system withSB51 and the systems
with half-integer values ofSB (SB>5/2) display very similar
behavior as that withSB53/2. One should also mention tha
the model under investigation belongs to the same univer
ity class as the usual spin-1/2 planar Ising model.

In addition to the phase diagrams, we have also stud
the temperature dependences of some thermodynamic q
tities and we have obtained some interesting results that
not be observed in the original Wu’s model. In order to de
onstrate these findings, we have selected the system
SB52 in which all characteristic behaviors are clearly ma
fested. At first in Fig. 4, the thermal variations of the subl
tice and total magnetization are shown forD/J520.5. The
corresponding two- and four-spin correlation functions
depicted in Figs. 5 and 6. As one can see, the subla
magnetizationmA exhibits the standard dependence that
usually observed in the planar Ising model with pair inter
tions only. On the other hand, the sublattice magnetiza
mB displays for negative values ofa a broad maximum a
low-temperature region. The phenomenon is clearly rela

FIG. 6. Temperature variations of the four-spin correlation fu
tion q4 for the same parameters as in Fig. 4.
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to the thermal spin excitations on the sublatticeB. These
excitations, in fact, form the characteristic dependences
the total magnetization~see Fig. 4! and those of the correla
tion functions~see Figs. 5 and 6!.

Finally, in Fig. 7, the quadrupolar susceptibilityxT as a
function of the crystal-field parameterD/J for a50.0 and
a51.0 has been plotted at the fixed temperaturekBT/J
50.25. The results indicate thatxT diverges at critical point
~similarly as the longitudinal susceptibility! and has a sharp
peak~maximum! in the region of abrupt spin excitations o
the sublatticeB. Thus the behavior of the quadrupolar su
ceptibility can be used to identify the second-order ph
transition at finite temperatures, as well as, the first-or
phase transition at the ground state.

IV. CONCLUSION

In this work, we have studied the generalized Wu mo
with two- and four-spin interactions. Applying the standa
star-triangle transformation, we have derived the exact eq
tions for the phase diagrams and other relevant thermo
namic quantities. Apart from the trivial finding of the unive
sality in the critical region, we have also obtained som
interesting results far from the criticality. As we have di
cussed in the previous sections, some of the results d
from those of the standard planar Ising models and the ph
cal origin of the effects follows from the competition be
tween the crystal field, exchange interactions, and temp
ture.

Although the present calculations provide the compl
exact solution to the model, there still remain some op
problems, for example, the existence of two different dis
dered phases. Despite the fact that we have presented
arguments that support this idea, the problem requires fur
investigation and we assume that it can be definitely resol
using large-scale Monte Carlo simulations.
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