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Exact results of a generalized Wu model with two- and four-spin interactions
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The mixed spin-1/2 and spi8g Ising model with two- and four-spin interactions on the honeycomb lattice
is studied by the use of a generalized star-triangle transformation. The exact results for the phase diagrams,
magnetization, correlation functions, internal energy, specific heat, and quadrupolar susceptibility are obtained
and discussed.
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[. INTRODUCTION kind is a two-sublattice Ising model with pair and four-spin
interaction originally introduced by WAL]. In this work, we
During the last two decades, there has been an increasingll generalize this model including a crystal field and arbi-
interest in studying Ising models with multispin interactions. trary spinsSg on one sublattice, while the spins on the sec-
The influence of multispin interactions on critical propertiesond one will be fixed §,=1/2).
of various models has been theoretically studied within dif- The outline of the present paper is as follows. In Sec. Il
ferent methods such as the exact calculatigns4], series  the relations forv_ari_ous physical quantit.ies of the modellwith
expansiong5,6], renormalization-group techniquég], and ~ tWo- and foupspln interactions are der_lved. The most inter-
Monte Carlo simulation$8,9]. Except these accurate treat- est[ng numerl'cal results are d|§cus§ed in Sec. lll. Finally, our
ments, less sophisticated mean-field and effective-field metHh@in conclusions are summarized in Sec. IV.
ods have been also used to investigate the multispin effects
in these systemgl0—17. Although the approximate meth-
ods usually provide rather good qualitative description of the Il. FORMULATION
systems with pair intergctions,_ th(_ay.can cor_npletely fall in the | this work, we will study a mixed spin-1/2 and spfa-
case of the systems with multispin mteractuﬁﬂlS]'. For this Ising model on the honeycomb lattice consisting of two sub-
reason, the exactly solvable systems play very important rolg,icesa andB that are occupied by the atoms with the spin
in understanding of the multispin effects. From the experi-g, — 1/2 ands,= 1/2, respectively. In addition to the conven-
mental pomt_ of view, t_he model§ with multispin mteractpns tional two-spin nearest-neighbor interactions 3S(
can be applled.to various phyS|.caI3 problem; ;uch as binary. ot ps), we consider also four body interactions —
alloys[8], classical fluid§14], solid *He [15], lipid bilayers J4Siti1fiois @MONg any set of four spins within a unit
[16], metamagnet§17], and rare gaseil8]. Another inter-  co)'of the dashed triangle as it is depicted in Fig. 1.

esting application of the model with four-spin interactions  the Hamiltonian of the system can be written in the form
represents the paper by Chunl&®] in which the thermody-

namic properties of hydrogen bonded ferroelectrics PbHPO
and PbDPQ have been studied. Moreover, the models with
four-spin interactions have been used to describe the first-
order phase transition in squaric acid crystal,(50,)
[10,2Q, as well as, in some copolymef&1]. One should
notice that the authors of these studies have obtained good
agreement of their theoretical predictions with the experi-
ments. Except above-mentioned applications, we would like
particularly to emphasize the recent experimental works by
Kobler et al. [22] who have significantly contributed to our
understanding of the higher-order interactions in magnetic
systems. In general, the models with multispin interactions
may exhibit physical peculiarities, for example, the nonuni-
versal critical behaviof2,3] or deviations from the Bloch’s
T%2 Jaw at low temperature22].

Despite the fact that the models with higher-order inter-
actions are much more complicated then their counterparts
with pair interactions, surprisingly some of these models are
exactly solvablg1-4]. One of the simplest models of this FIG. 1. Part of the honeycomb lattice representing the general-

ized Wu model. Spins in the center of the dashed triangle interact
with their three neighbors with the pair interactiahand four-spin
*Email: jascur@kosice.upjs.sk interactionJ, .
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keB n=-5g 8

where the summation is over all sites of fBeublattice and nB.J

the site Hamiltoniar#, is given by —cosh—g—(12+a)

He=—I( it st mia) Sc— datkr MramiaSk =0. (6)
—-D(S)? J>0. (2)  From this equation one can find the dependences of the criti-

] ) ) ) cal temperature on the four-spin interaction and the crystal
In Eq. (2), the first term describes the interactions betweerjg|d parameter for arbitrary values of the sgg. More-
pairs of nearest-neighbor spins, the second term represeriger, the straightforward application of E¢(B) relates the
the four-spin interaction, and the last one describes the crygartition function of the generalized Wu modey) to the
tal field effects orB atoms only. The spin variables, take,  partition function of the spin-1/2 Ising model on the triangu-
on the sublatticé, the values of+ 1/2 andS,, on the sub- lar lattice (Z;) by
lattice B, run over (Bg+ 1) values allowed foB atoms with AN
the spinSg. It is easy to see that for the particular case of Zn(BJ.834.8D)=AT"Z(BR), @)

J4=0 our model reduces to the standard mixed-spin Isingyhere the parameters and R obviously satisfy Eq(4) and
model on the honeycomb lattice, which has been exactly denotes the total number of the spins on the honeycomb
solved by GoncalveR23]. On the other hand, for the case of |gtijce.

Sg=1/2 andJ,#0 we obtain the model that has originally | adition to the phase boundaries, we can also simply
been introduced and discussed by \]. Owing to this  calculate some interesting physical quantities. For example,
connection, the present model will be reffered to as the gene magnetization and internal energy of the system can be

eralized Wu model. . . . directly expressed through the mean values of the spin vari-
The most important point of our calculations is the fol- gples(or correlation functions Namely,

lowing extended star-triangl@r Y—A) transformation(see
24] and references thergin 1

24 ° My= (Mt me),
Sg

Zs exfd BI(pia+ piat miz) Sk Tr py expl— BHy)
MA= (i )n= Trexp— BHp)

B _ TrScexp(—BHy)
M= (S = Trexp(—BHy)

-~ B

+ BIapmis ko ttkaSk+ BD (S 2]
=Aexd BR(ma ot itz t miomia) . (3)

®

In this transformatiorA and R represent unknown param-

. . and
eters of the relevant triangular lattice that can be expressed in
the form[24] J N
Up=~— §<Sk(,uk1+ Mk2+Mk3)>h—§<skﬂk1,uk2/1«k3>h

\%
A=VIV3,  BR=Ing, (@ b
2
= 5((S0%n, ©)
where we have defined the functioxs andV,,
whereMy, andU}, denote the magnetization and the internal
energy per one site of the generalized Wu model, respec-

' tively, and the symbo{- - - };, means the standard ensemble
average for the system described by the HamiltorfianAt

> ngJ
Vi= >, exp(,BDnz)cosl{T(lﬁ—a)

- B

Sp nBJ this stage, the main mathematical difficulty is to calculate the
Vo= equDnz)cos%—M—a) . a=Jd,1]. spin correlations included in Eq$8) and (9). Fortunately,
n=-Sg 8 these correlations can be easily obtained from the following
®)  exact Callen-Suzuki-type identif25]
In this way, the generalized Wu model has been transformed Sp
into the exactly solvable spin-1/2 Ising model on the trian- > (S)Pexp — BH,)
gular lattice. One should notice that the transformati®nis (SOPFn=1 S=-Sg h 19
rather general since it is valid for arbitrary spin vali®s K/h K S P4
however, it is limited topologically. After putting the critical > exp—BHy)
temperature of the spin-1/2 Ising model on the triangular S5 (10)

lattice (B.R=R/kgT.=In3) into Eq. (4), we obtain the
phase boundaries of the generalized Wu model, which satisfwhere, is given by Eq.(2) andf represents a function of
the relation arbitrary spin variables excef}, . After applying one of the
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standard methodgfor example, the differential operator may determine them directly from the definition. In fact,

technique[26]) one gets the remaining quantities in E(®.
and(9)

Mg=(S)n=6K1{ sx1)nt 8K sy1tiartica)n

for p=1, f,=1, (11
a=((S)* =Ko+ 12K i)y for p=2, fi =1,
(12
K1
PhE<SkMk1>h:?+(4K1+2K3)<Mk1Mk2>h
for p=1, fi=up, (13
3K, Ks
UI4E<SkMk1Mk2Mk3>h:T(Mkl#k2>h+g
for p=1, fi=parkomis- (14)

The coefficientsK,— K5 depend on the exchange param-
eters, the crystal field and the spin value, and they are given

by

1
Ko=7[Gs,(31/2+ al/8) +3Gs, (/12— J/8)],

1

Ky=7[Fs,(33/2+ adl8) + F,(3/2- adIg)],
1

Kp=7[Gs,(8/2+ a/8) - G (J/2— ad/8)],

1
Ks=7[Fs,(3)/2+adi8) ~3Fs (32~ ad/®)], (15)

where the function&s_(x) andFs_ (x) have been defined as

;, n? exp(n?BD)cosH Bnx)
I R— (16)
ES exp(n?BD)cosh Bnx)
and
Sg
> nexp(n?BD)sinh AnX)
A E— o
nESB exp(n?BD)cosh Bnx)

using the transformatiof3) one easily proves the equality
[27]

i Mk/)>t y
(18)

wheref represents a function that depends only on the spin
variablesu,; of the sublatticéA. The subscripts andt mean

that the relevant averaging is related to the honeycomb and
triangular lattice, respectively. Consequently, from ELf)

one obtains relations

<f(Mki1Mkjv o Mk/)>h:<f(Mki,Mkj,

(M= <Mk1>t ) <Mk1Mk2>h: <Mk1Mk2>t )

(i tiamia) n = { Mk Mo i)t » (19

that complete our calculations, since the spin correlations on
the triangular lattice are well knowf27]. Apart from the
quantities discussed above, we are also able to get the spe-
cific heat and the quadrupolar susceptibility of the system
under investigation that are, respectively, defined as follows:
h=

) XT:(E (20)

T

-
IIl. NUMERICAL RESULTS AND DISCUSSION

We start our discussion with the investigation of the
ground-state properties of the generalized Wu model. It is
worth noticing that in addition to the ground-state energy
Uy, we will also analyze the exchange parameRefor T
—0 because the spin configurations on the sublatiiead
consequently also the number of possible phases essentially
depend on the sign d®. At first, we summarize our findings
for integer values o5g. In this case we have found that if
D/J= -1 then the exchange paramelRechanges its sign as
follows:

R>0 for a>-—4,
R=0 for a=-4,
R<0 for a<-—4. (21

On the other hand, fob/J<—1 we have

R>0 for a>-8D/J—12,

R=0 for 12D/J+4<a<-8D/J-12,

R<0 for a<12D/J+4. (22)

Already at this stage it is clear that in the regions of positive
values ofR, the ground state of our system will be ordered.
In the regions wher&®=0, we expect the appearance of the
paramagnetic phas®g) and finally, forR<0 a more com-
plicated disordered phas®§) can be observed since in this

To complete our calculations, we have to find out the spircase our model is transformed on the antiferromagnetic tri-
correlations on the r.h.s of Eq&l1)—(14). Because all these angular lattice. A simple examination of the possible spin
correlations include only the spins of the sublattisewe  configurations reveals the existence @g2ordered phases
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FIG. 2. Phase diagrams of the generalized Wu model with two-
and four-spin interactions fog=1 and different values of the FIG. 4. Temperature dependences of the total magnetizitipn
crystal-field parameteb/J. (full lines), sublattice magnetizatiom, (dashed lines and mg
(dotted line$ for the generalized Wu model with/J=—0.5 and
(to be denoted a®,, O,, ... ,Osz)- All these phases are different values of the four-spin interaction.

ferromagnetic ones witm,=1/2 and different values ahg

that depend on the crystal field and four-spin interactionsBy comparingU,(O;), U,(O,), andUy(O3) one finds that
The regions of stability for the relevant ordered phases cafor a>—12+8(1—2Sg)D/J is the stable phas®,, for «

be found in the usual way, i.e., by comparing their ground-<—12+8(1—2Sg)D/J is the stable phas®;, and for «
state energies. In order to clarify the behavior of the ground= —12+8(1—-2Sg)D/J all three phases coexist, thus a first-
state phases, we will now analyze one representative caseder phase transition is possible. Of course, the similar be-
with Sg>1. This choice is related to the fact that f6g havior appears also at lower values@fvhere other phases
>1 more than three ordered phase appear in the system th@,, Os, ...) become stabléor coexis}. It is also clear
allows one to make very general conclusions. For the sake dhat if we make the four-spin interaction weak enough a dis-
simplicity, we will investigate only the stability of three typi- ordered phase will appear in the system. In fact, in agreement
cal ferromagnetic phasé3,, O,, andO4 that are present in  with Egs.(21) and(22) one finds in the relevant regions the
any system withSg>1. According to our notation, the sub- paramagnetic phas®,; or another disordered phad®,,
lattice magnetizatiormg of these phases is, respectively, which is expected to manifest different physical properties in
given by mg(0O;)=Sg, mg(0,)=Sg—1/2 and mg(O3;)  comparison with the standard paramagnet. Moreover, one
=Sz — 1. Similarly, the ground-state energies of these phasesan expect that the disordered phdsg can also exist at

are given by finite temperatures. This implies the possibility of a phase
transition betweerd,; andD,. We believe that this conjec-
U, (0y)= —3JSB/4—J4SB/16—DS§/2 ture can be verified by Monte Carlo simulations in the rel-

evant region.
To complete our considerations, we would like to empha-
Un(O3) =—33(2S3—1)/8—J,4(2S5—1)/32 size that the foregoing discussion is fully applicable also for
_ > the generalized Wu model with arbitrary half-integer values
D(S5=Ss+1/2)/2, of Sg taking into account a small modification. Namely, we
have to account for the fact that in the case of half-integer

or values ofSg the sign of the paramet&is given by Eq(21),
regardless of the value @.
Un(O3)=—3J(Sg—1)/4—J4(Sg—1)/16—D(Sg—1)?/2. Now, we will proceed further with the investigation of the

finite-temperature phase diagrams of generalized Wu model.
2.0 L IR LN RN RN RN |
L Sp=3/2 D/J=10.0

1.0 D/J=-05 Sp=2 -

1.5
- 0.8
| 0.6
<
05k 0.4

02}F

00 4 2 0 2_4 6 8 10 0'0 . 0-5 . 1'0 —s
) T kT )
FIG. 3. Phase diagrams of the generalized Wu model with two-
and four-spin interactions faBz=3/2 and different values of the FIG. 5. Temperature variations of the two-spin correlation func-
crystal-field parameted/J. tion p,, for the same parameters as in Fig. 4.
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FIG. 6. Temperature variations of the four-spin correlation func-

tion g, for the same parameters as in Fig. 4. FIG. 7. Crystal-field dependences of the quadrupolar suscepti-

. . . bility xt for Sg=2, kgT/J=0.25 and two values ofr («=0.0,
In order to illustrate typical phase boundaries, we have dea=1.0).

picted in Figs. 2 and 3 the dependences of the critical tem-
peraturekgT./J versusa for selected values db/J. Since

the phase diagrams depend also on the Spipwe have {5 the thermal spin excitations on the sublattBe These
analyzed two representative systems, namély=1 and  excitations, in fact, form the characteristic dependences of

Sg=3/2. As we can see, the critical temperature in both casefhe total magnetizatiotsee Fig. 4 and those of the correla-
decreases monotonically from its maximum vall® « tjon functions(see Figs. 5 and)6

—o0) and vanishes at a certain characteristic value of the Finally, in Fig. 7, the quadrupolar susceptibiligy as a

parametew (to be denoted as). We have found thatin the  fynction of the crystal-field paramet&/J for «=0.0 and

case ofSg=1 the parametew, is given by «=1.0 has been plotted at the fixed temperatigd/J

=0.25. The results indicate thgt diverges at critical point

_4 for D/J=—1 (similarly as the _Iongitudin_al susceptibil)t;a_nd ha_s a_sharp

— (23) peak(maximun) in the region of abrupt spin excitations on
—-8D/J—-12 for D/I<-1, the sublatticeB. Thus the behavior of the quadrupolar sus-

ceptibility can be used to identify the second-order phase

. . transition at finite temperatures, as well as, the first-order
and in the case of half-integer values $§=3/2 we have phase transition at the ground state.

obtaineday= —4 for arbitrary values of the crystal-field pa-
rameter. Here one should notice that the valuesygffor
Sg=1 andSg=3/2 are, respectively, valid for arbitrary inte-
ger and half-integer values &; and they are in agreement
with the ground-state analysis. We have also observed that |n this work, we have studied the generalized Wu model
further increase oSy does not bring any qualitative results with two- and four-spin interactions. Applying the standard
for the system. In fact, it is easy to verify that the systemsstar-triangle transformation, we have derived the exact equa-
with integer values oS (Sg=2) exhibit qualitatively the tions for the phase diagrams and other relevant thermody-
same behavior as the system wlBg=1 and the systems namic quantities. Apart from the trivial finding of the univer-
with half-integer values 08 (Sg=5/2) display very similar  sality in the critical region, we have also obtained some
behavior as that witlsg=3/2. One should also mention that interesting results far from the criticality. As we have dis-
the model under investigation belongs to the same universatussed in the previous sections, some of the results differ
ity class as the usual spin-1/2 planar Ising model. from those of the standard planar Ising models and the physi-
In addition to the phase diagrams, we have also studiedal origin of the effects follows from the competition be-
the temperature dependences of some thermodynamic quamveen the crystal field, exchange interactions, and tempera-
tities and we have obtained some interesting results that caare.
not be observed in the original Wu's model. In order to dem-  Although the present calculations provide the complete
onstrate these findings, we have selected the system wittkact solution to the model, there still remain some open
Sg=2 in which all characteristic behaviors are clearly mani-problems, for example, the existence of two different disor-
fested. At first in Fig. 4, the thermal variations of the sublat-dered phases. Despite the fact that we have presented some
tice and total magnetization are shown @fJ=—0.5. The  arguments that support this idea, the problem requires further
corresponding two- and four-spin correlation functions arenvestigation and we assume that it can be definitely resolved
depicted in Figs. 5 and 6. As one can see, the sublatticasing large-scale Monte Carlo simulations.
magnetizationm, exhibits the standard dependence that is
usually observed in the planar Ising model with pair interac- ACKNOWLEDGMENT
tions only. On the other hand, the sublattice magnetization
mg displays for negative values af a broad maximum at This work has been supported by the Ministry of Educa-
low-temperature region. The phenomenon is clearly relatetion of Slovak Republic under VEGA Grant No. 1/6020/99.
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